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INTRODUCTION

Hypothesis -
Complement effector systems involved in the immune response to tumor cells include amplification of

inflammatory response, recruitment of immune effector cells and direct and NK cell mediated cytolysis. It is
hypothesized that complement regulatory proteins expressed on the tumor cell surface promote
tumorigenesis and present a barrier to effective complement-mediated immunotherapy. We propose that
reversing the effects of tumor-expressed complement inhibitors will allow effective immune-mediated
clearance of tumor cells and improve prospects for successful immunotherapy. The current project is
focussed on the study of the complement inhibitory protein, CD59.

Background
Complement is one of the major effector mechanisms of the immune system and its activation results in the

formation of the amplification C3/CS5 convertases, which cleave CS5 to initiate the formation of the membrane
attack complex (MAC or C5b-9), usually on the activating cell surface. The cytolytic MAC is formed from
the sequential assembly of the soluble plasma proteins, C5b, C6, C7, C8 and C9.

The activation of complement on a tumor or normal host cell can occur following nonspecific, antibody-
independent complement deposition via the alternative pathway (1). Specific complement deposition can
also occur on a tumor cell following the binding of antibodies to tumor cell surface proteins (such tumor-
specific antibodies are often found in patient's serum). In either case, complement activation on tumor (and
normal) cells is controlled by various membrane proteins; decay-accelerating factor (DAF), membrane
cofactor protein (MCP) and complement receptor 1 (CR1). These proteins inhibit C3/C5 convertase
formation. Control of cytolytic MAC formation on host cell membranes is provided by CD59, a cell surface
glycoprotein that binds to C8 and C9 in the assembling MAC and prevents membrane insertion.

An important feature of complement regulatory proteins (particularly CD59) is their species selectivity. For
eg., human CD59 inhibits MAC formation by human and primate complement, but not by rodent
complement (2-4). Membrane inhibitors of complement protect tumor cells from cytolytic complement attack
in vitro. CD59 and usually DAF and/or MCP are expressed by virtually all breast and other primary tumors
and tumor cell lines that have been examined (5-8). CD59 neutralization in vitro by anti-CD59 mAbs
enhance complement-mediated lysis of breast tumor cells (5). Thus, effective lysis of breast tumor cells by
complement in vitro requires that their resistance to complement be overcome, an important consideration
for complement-dependent immunotherapy using mAbs. It is now clear that cancer specific antibodies are
produced by patients, and breast tumor-specific or overexpressed antigens (eg. HER2/neu, MUC1) have
been identified (9-13).

BODY

Some of the data described below has been submitted to Clinical and Experimental Immunology for
publication (accepted subject to minor revision) and the manuscript is included.

TASK 1: Months 0-6: IN VITRO EXPERIMENTS: Confirmation of the role of CD59 in
conferring protection against antibody-targeted complement lysis of tumor cells. Will
transfect human tumor cell lines with rat CD59 and select expressing populations. Will
determine if transfected cells have increased resistance to rat complement.

This task has been completed (and extended to include mouse CD59)

Results

Complement-mediated lysis of MCF7 cells expressing rodent CD59

MCF7 were transfected with rat or mouse CD59 cDNA, and cell populations stably expressing high levels
of recombinant rodent CD59 were isolated by cell sorting (fig. 1). Transfected cell populations were then




tested for their susceptibility to complement-mediated lysis to determine whether expression of rodent CD59
correlated with increased resistance to rodent complement. Untransfected MCF7 cells are relatively resistant
to lysis by homologous human complement, but are effectively lysed by both rat and mouse complement
(fig. 2, and see also fig. 4 below). The expression of either rat or mouse CD59 on MCF7 cells however,
protected them from lysis by rat and mouse complement, respectively (fig. 2). MCF7 cells expressing rat
CD59 were almost totally resistant to lysis by 40% rat complement. The increased rat complement resistance
of rat CD59 transfected MCF7 cells was reversed by the addition of anti-rat CD59 blocking mAb 6D1 (not
shown), thus confirming that the heterologously expressed rodent CD59 is responsible for providing the
observed protection from rodent complement-mediated lysis. It is possible that an anti-CD59 antibody could
increase cell lysis by fixing complement, but it has been demonstrated previously that mAb 6D1 alone does
not cause increased complement-mediated cell lysis by activating complement (14). These data demonstrate
the relative activities of each CD59 protein against heterologous sera, and data is relevant to establishing
rodent models for the study of complement and complement inhibitors in tumor growth and control.
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Fig. 1. Expression of rodent CD59 by transfected MCF?7. Stably transfected homogenous populations of MCF7 cells
expressing either rat or mouse CD59 were isolated by several rounds of cell sorting. Figure shows flow cytometric analysis of
sorted populations. Cells were stained by immunofluorescence using anti-rat CD59 monoclonal antibody (6D1) or rabbit anti-
mouse CD59 polyclonal antibody. Note that Inmunofluorescence is not quantitative relative to the different CD59 proteins.
Histograms of the relative mean fluorescence intensities are shown.
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Fig. 2. Complement-mediated lysis of MCF7 cells expressing rat and mouse CD59. Control and transfected MCF7 cells
were sensitized to complement by preincubation in 15% anti-MCF7 antiserum. Sensitized cells were exposed to different
concentrations of either human (a), rat (b) or mouse (c¢) serum, and lysis determined. The omission of either sensitizing

“antibody or of serum in cell lysis assays resulted in a background lysis of less than 10% of test value. Figure shows
representative data from 3 different experiments.

Methods

Transfection of MCF7 cells and flow cytometry

cDNA constructs were transfected into 50-75% confluent MCF7 cells using Lipofectamine according to the
manufacturers instructions (Gibco). Stable populations of MCF7 cells were isolated by three rounds of cell
sorting using anti-rat CD59 or anti-mouse CD59 antibodies as described (15). Analysis of cell surface
protein expression was performed by flow cytometry using appropriate antibodies (15).

Cell lysis assays

Complement-mediated cell lysis was determined by both *'Cr release (16) and by microscopic examination
following trypan blue staining (17) as described. Both methods gave similar results. Rabbit antisera to
MCF?7 cell membranes that was used to sensitize MCF7 cells to complement was prepared by standard
techniques (18).

Further experimental details are described in a submitted manuscript that is included with this report (19).

Discussion

The demonstration that heterologous (nonhuman) cells transfected with human CD59 display increased
resistance to lysis by human complement provided direct and unequivocal evidence that human CD59
inhibits human complement-mediated cell lysis (20,21). The phenomenon of species selective activity
allowed us to use a reciprocal approach to determine directly the functional significance of CD59 expressed
on human breast tumor cells. Data generated is relevant to establishing rodent models for the study of
complement and complement inhibitors in tumor growth and control.

TASK 2: Months 0-12: IN VITRO EXPERIMENTS: Determination of the effect or rat
complement on human breast cancer cells. First, different breast tumor cell lines will be
screened for CDS59 expression. Sensitivity of CD59 positive cells to rat serum will be
assayed. Cells will be sensitized to complement using tumor cell specific antibodies. Will
repeat experiments using purified complement components to show if CD59 is inhibiting
rat complement protein C9.




This task has been performed using the MCF7 cell line, and studies using other cell lines are near
completion (preliminary data not shown indicate that the breast cancer cell lines BT474, T47D and SKBr3
show similar cell lysis characteristics as MCF7).

Results

Expression of endogenous membrane complement inhibitors on MCF7

Flow cytometric analysis confirmed the endogenous expression of the human membrane-bound complement
inhibitors CD59, DAF and MCP on MCF7 cells (fig. 3). We have also determined that DAF, MCP and
CD59 is similarly expressed on the breast cancer cell lines BT474, T47D and SKBr3 (data not shown).
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Lysis of MCF7 cells by human and rodent sera

Rabbit antiserum raised against MCF7 cell membranes effectively sensitized MCF7 cells to lysis by rat and
mouse complement. However, antibody sensitized MCF7 cells were significantly more resistant to lysis by
human complement (fig. 4). At a concentration of rat serum giving half-maximal lysis, the equivalent human
serum concentration resulted in 5-fold less lysis. The relative sensitivity of MCF7 to lysis by rodent, but not
human complement, is indicative of species selective complement inhibition by endogenous membrane-

bound inhibitors.

Previous data have shown that human CD59 does not function effectively against rat complement (4), and
the data shown in fig. 4 indicate that endogenous expression of DAF and MCP on MCF7 also does not
effectively protect the cells from lysis by rat or mouse complement (see also fig. 2 above).
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Fig. 4. Complement-mediated lysis of MCF7 cells. MCF7 cells were sensitized to complement by preincubation in the
indicated concentrations of anti-MCF7 membrane rabbit antiserum. Sensitized cells were washed in media, exposed to 25% of
either human, rat or mouse complement (37 °C/60 min), and cell lysis determined. The omission of either sensitizing antibody
or of serum in cell lysis assays resulted in a background lysis of less than 10% of test value. Figure shows representative data
from 3 separate experiments.

Methods
Applicable methods are described above (task 1) and in figure legends.

TASK 3: Months 6-18: IN VITRO EXPERIMENTS: Targeting CD59 inhibitory antibodies

to breast tumor cells. Will confirm that rat adenocarcinoma 13762 cells express CD59.

Then confirm their susceptibility to rat complement after neutralization of rat CD59. If

successful, will isolate 13762-specific antibodies and attempt to target anti-rat CD59

{)nAbs to 13762 cell surface by means of 13762-specific antibodies and biotin-avidin
ridges.



We have determined that rat adenocarcinoma 13762 cells express high levels of CD59 (and also Crry, a
complement inhibitor of activation) (fig. 5). Functional studies to determine the susceptibility of 13762 cells
to rat complement after neutralization of rat CD59 have just been initiated.
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Methods

Rat CD359 and rat Crry expression on 13762 cells was determined by flow cytometry by standard
procedures (4).

Discussion
Data obtained will now allow progression onto the more relevant functional experiments that constitute part
of this task.

TASK 4: Months 6-24: IN VITRO: Will test rat and human breast tumor cell lines
transfected with HER2 and rat CD59, respectively, for sensitivity to rat complement.
Will assess ability of tumor specific antigens to target transfected cells. Will attempt to
target anti-rat CDS9 antibodies to transfected cell surface by means of tumor specific
antibody and biotin-avidin bridge.

Progress on this task has been made. This task is related to tasks 1 and 2, and data presented above is

relevant. Two breast cancer cell lines have been transfected with rat CD59: MCF7 (see fig. 2 for functional
data) and BT474 (not shown). Their susceptibility to rat complement has been determined. Cell lysis of

10



MCF7 and rat CD59 transfected MCF7 is shown in figs 2 and 4. The lysis of untransfected and transfected
BT474 by rat complement (using an anti-BT474 membrane complement-sensitizing antiserum) was the
same as that for MCF7 and is not shown.

BT474 is a HER2 positive cell line. MCF?7 is a MUC1 positive cell line. We have shown that certain
antibodies against the breast tumor-specific antigens HER2 and MUC1 are able to target breast cancer cell

lines and activate complement (fig. 6).

60 100 MCF7 cells

2 73 o °
& 40 control Ab 50
= 30 anti-HER?2 IgG1 A7 —TF— control Ab
o 20 anti-HER2 IgG2b 25 o ........ Oy erree anti-MUC1
¥ 10

0 1 1

20 40
0 10 % rat szegum 30 40 0 10 % rat serum 30

Fig 6. Breast tumor cell lines can be sensitized to heterologous complement by antibody recognizing tumor-specific
(overexpressed) antigen. Standard assay procedures were followed (see above). The anti-MUCI antibody source used was rabbit
polyclonal antiserum. The anti-HER? antibodies were purified mAbs used at 20 ug/ml.

An IgM monoclonal antibody directed against the breast cancer-associated antigen MUC1 (BC3,(22)) also
sensitized MCF7 cells to lysis by rat complement, but was less effective than the polyclonal antiserum
shown above (data not shown).

Discussion

The presented data indicate that endogenous CD59 expressed on human tumor cells implanted into rodents
is unlikely to provide effective protection against complement attack when tumors are targeted by
complement activating antibodies. The relative ineffectiveness of human CD59 against rat and mouse
complement presents a serious hindrance for studies aimed at determining the protective role of CD59 (and
other complement inhibitors) in rodent hosts bearing human cancers. The current data establishes the
feasibility of using human cancer cells expressing rodent CD59 to show, in vivo, the regulatory effects of

CD59 on complement-mediated tumor cell lysis.

TASK 5: Months 0-36: Will use molecular modelling techniques to determine C9 peptide
ligand for CD59 binding, and determine three dimensional structure of the CDS59-C9
peptide ligand complex.

- We have better defined the binding site for C9 on the CD59 protein, and these studies will greatly assist in
aim of the determination of the three dimensional structure of the CD59-C9 peptide ligand complex.

Results

Our previous functional analysis of chimeric human/rat CD59 proteins indicated that the residues
responsible for the species selective function of human CD59 map to a region contained between positions
40-66 in the primary structure (4). By comparative analysis of rat and human CD59 models and by
mutational analysis of candidate residues, we have now identified individual residues within the 40-66
region that confer species selective function on human CD59. Individual human to rat substitutions F47A,
T51L, RS5E and K65Q each produced a mutant human CD59 protein with enhanced rat complement
inhibitory activity. Substitutions of all other nonconserved residues between positions 40-66 did not effect
species selective function. The F47A, T51L, R55E substitutions were the most effective, and interestingly

the side chains of these residues are all located on the same face of the short helix of CD359 (fig. 7).
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Human CD59

Fig. 7. Ribbon diagram of human CD59 showing residues involved in species selective function.

Methods.

Human CD59 residues were substituted for rat residues by PCR mutagenesis procedures. The mutatnt
proteins were expressed on the surface of CHO cells, and the susceptibility of the transfected CHO cells to
human and rat complement determined. Human CD59 does not inhibit rat complement, and the acquisition
of rat complement inhibitory activity by the substitution of a rat residue indicates a role for that residue in
species selective function. The experimental procedures are described in detail in ref (4).

TASK 6: Months 6-36: IN VIVO: Continuation of task 1. Determine which human breast
cancer cell lines grow in nude rats (about 20 rats required). Will Use cell line that
developed tumors and that has been successfully transfected with rat CD59 to seed nude
rats. Will then determine the effect of tumor-specific antibodies on growth of these cells
in rats (about 40 rats required).

We have established conditions for estrogen-supplemented growth of MCF7 and BT474 cell lines in Rowett
nude rats. Between 5 x 10° and 1 x 107 cells injected per site with matrigel produce tumors. A full dose
response study of untransfected cells is underway. The cell line SKBR3 did not grow in nude rats under the
conditions tested (up to 1 x 107 cells injected per site with and without matrigel). Other cell lines are under
investigation.

TASK 7: Months 12-30: IN VIVO: Continuation of task 2. Will determine if tumor-
specific antibodies can elimate or reduce human breast cancer cell growth in rats (about
30 rats). To confirm role of CD59 and complement in any reduction in tumor growth that
is observed, rats will be depleted of complement and re-tested (about 20 rats). ‘

Studies not yet initiated.

TASK 8: Months 18-36: IN VIVO: Continuation of tasks 3 and 4. Tumors will be grown
in rats using cells described above. Will determine whether anti-CD59 antibodies can be
targeted to tumors using tumor-specific antibodies and biotin-avidin bridges (about 50
rats).

Studies not yet initiated

12




CONCLUSIONS

In conclusion, our data strengthen the hypothesis that the modulation of CD59 activity on a tumor cell
surface will provide an effective therapy when combined with complement-activating anti-tumor antibodies.
Neutralization of CD59 (or other complement regulatory proteins) may also enhance a normally ineffective
cytolytic humoral immune response. These hypotheses now need to be tested in vivo. To this end, the
current data define important parameters necessary for establishing rodent models designed to evaluate the
role of complement and CD359 in the growth and control of human cancer. '
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SUMMARY

CD59, decay acceleraﬁng factor (DAF) and membrane cofactor protein (MCP) are widely
expressed cell surface glycoproteins that protect host cells from the effects of homologous
complement attack. Complement inhibitory activity of these proteins is species selective. We show
that the human breast cancer cell line MCF7 is relatively resistant to lysis by human complement,
but is effectively lysed by rat or mouse complement. CD59, DAF and MCP were all shown to be
expressed by MCF7. The species selective nature of CD59 activity was used to demonstrate
directly the effectiveness of CD59 at protecting cancer cells from complement-mediated lysis.
cDNA's encoding rat and mouse CD59 were separately transfected into MCF7 cells, and cell
populations expressing high levels of the rodent CD59 were isolated by cell sorting. Data show
that rat and mouse CD359 were highly effective at protecting transfected MCF7 cells from lysis by
rat and mouse complement, respectively. Data further reveals that rat CD59 is not effective against
mouse complement, whereas mouse CD59 is effective against both mouse and rat complement.
These studies establish a model system for relevant in vivo studies aimed at determining the effect
of complement regulation on tumorigenesis, and show that for effective iinmunotherapy using
complement-activating anti-tumor antibodies, the neutralization of CD59 and/or other complement

inhibitory molecules will likely be required.

Key words CD59, complement, complement inhibitor, antibody-mediated lysis.




INTRODUCTION

Complement is one of the major effector mechanisms of the immune system and its activation
results in the formation of the C3/C5 convertases, which cleave C5 to initiate the formation of the
membrane attack complex (MAC or C5b-9). The cytolytic MAC is formed from the sequential
assembly of the soluble plasma proteins, C5, C6, C7, C8 and C9. Complement activation on host
cells is controlled by various membrane proteins which inhibit C3/C5 convertase formation; decay-
accelerating factor (DAF), membrane cofactor protein (MCP) and complement receptor 1 (CR1).
Control of cytolytic MAC formation (the terminal complement pathway) on host cell membranes. is
provided by CD59, a widely distributed cell surface glycoprotein that binds to C8 and C9 in the

assembling MAC. For review of complement inhibitory membrane proteins, see [1].

CD59 and usually DAF and/or MCP are expressed by virtually all breast and other primary tumors
and tumor cell lines that have been examined, and several studies have reported the upregulation of
complement inhibitory proteins on tumor cells [2-8]. Neutralization of complement regulatory
proteins on the surface of tumor cells by antibodies significantly increases their susceptibility to
complement-mediated lysis in vitro [2,3,5,9,10]. The only relevant in vivo experiment reported to
date, shows that pretreatment of rat tumor cells with an antibody that blocks the function of a rat
complement inhibitor (Crry/p65), substantially increases survival time of recipient rats after
transplantation of treated tumors [11]. There is thus very good evidence to support the hypothesis
that tumor-expressed complement inhibitory proteins play an important role in promoting tumor
growth by inhibiting complement activation and cytolysis. A significant contributing factor in the
lack of success of complement-activating mAbs in clinical trials to date may therefore be the
presence of complement inhibitors on the tumor cell surface. Also, inhibition of tumor-expressed
complement regulators may enhance an ineffective cytolytic humoral immune response against

tumor cells in therapy which does not involve administration of exogenous activator antibodies.




An important feature of membrane complement regulatory proteins is their species selective
inhibitory activity [12-18]. These proteins displéy significant variations in their effectiveness at
inhibiting heterologous complement. Thus, the role of complement inhibitors expressed on human
cancer cells is difficult to assess in rodent models, since human inhibitors may have limited
function against rodent complement. Here we demonstrate directly for the first time the protective
role that CD59 provides to a human breast cancer cell. We have determined patterns of species
selective activity of endogenous human complement inhibitors, and of rat and mouse CD59
expressed in a human tumor cell line MCF7. These data will permit the planning of meaningful in

vivo studies aimed at determining the role of CD59 in promoting tumor growth.

MATERIALS AND METHODS

Cells and DNA

The human breast cancer cell line MCF7 was obtained from the American Type Culture Collection
(Rockville, MD). Cells were grown in Eagle's modified essential medium (EMEM) supplemented
with 10% FCS, 0.1% non-essential amino acids and bovine insulin (10 ug/ml). cDNA encoding
rat [19] and mouse [20] CD59 was subcloned into the mammalian expression vectors pCDNA3
(Invitrogen, Carlsbad, CA) and pDR2Ef1a [21], respectively. pDR2Ef1a was a gift from Dr. L
Anegon (Nantes, France). Stably transfected MCF7 cell populations were selected following the

cultivation of cells in the presence of G418 (pCDNA3) or hygromycin (pDR2Ef1a).

Antibodies and complement
Rabbit antisera to MCF7 cell membranes that was used to sensitize MCF7 cells to complement was
prepared by standard techniques [22]. Flow cytometric analysis of MCF7 cells using anti-MCF7

antiserum gave a positive signal at a dilution of 1:200. Cell membranes were prepared by Dounce




homogenization of cells in hypotonic media (10 mM sodium phosphate, pH 8) and subcellular
fractionation to remove nuclei and mitochondria. Anti-rat CD59 mAb 6D1 [23], anti-mouse CD59
polyclonal antibody [20] and anti-DAF mAb 1A10 [24] were described previously. Anti-MCP
mAB M75 [25] and anti-human CD59 mAb YTHS3.1 [26] were gifts from Drs. D. Lublin (St.
Louis, MO) and H. Waldmann (Oxford, UK), respectively. FITC-conjugated antibodies used for
flow cytometry were purchased from Sigma (St. Louis, MO). Normal human serum (NHS) was
obtained from the blood of healthy volunteers in the laboratory. Mouse serum was prepared from
the blood of BUB/BnJ mice (Jackson Laboratories, Bar Harbor, ME). Mouse blood was collected
by heart puncture, and sera processed after clotting for three hours on ice. Freshly collected rat

serum was purchased from Cocalico Biologicals (Reamstown, PA). All sera were stored in

aliquots at -70 °C until use.

Transfection of MCF7 cells and flow cytometry

c¢DNA constructs were transfected into 50-75% confluent MCF7 cells using Lipofectamine
according to the manufacturers instructions (Gibco). Stable populations of MCF7 cells were
isolated by three rounds of cell sorting using anti-rat CD59 or anti-mouse CD59 antibodies as
described [27]. Analysis of cell surface protein expression was performed by flow cytometry using

appropriate antibodies [27].

Cell lysis assays

Complement-mediated cell lysis was determined by both 5!Cr release [28] and by microscopic

examination following trypan blue staining [29] as described. Both methods gave similar results.

Briefly, MCF7 cells were detached by a 3 min/25 °C treatment with trypsin/EDTA (Gibco),

washed once and resuspended in EMEM/10% heat inactivated FCS. For the trypan blue exclusion
assay, cells were resuspended to 1 x 109/ml. For 51Cr release assay, cells were preloaded at a

concentration of 1 x 107/ml (2h/37 °C), washed in complete media and resuspended to 1 x 106/ml.




Rabbit anti-MCF7 cell membrane antiserum diluted in EMEM/10% FCS was added and the cells
incubated on ice for 30 min. Cells were centrifuged and resuspended to 1 x 106/ml in EMEM/10%

FCS. Equal volumes of cells and serum dilutions were incubated for 60 min. at 37 °C, and cell
lysis determined. The effect of anti-rat CD59 mAb 6D1 on rat complement-mediated lysis was

performed as previously described [29].

RESULTS

Lysis of MCF7 cells by human and heterologous serum

Rabbit antiserum raised against MCF7 cell membranes effectively sensitized MCF7 cells to lysis by
rat and mouse complement. However, antibody sensitized MCF7 cells were significantly more
resistant to lysis by human complement (fig. 1). At a concentration of rat serum giving half-
maximal lysis, the equivalent human serum concentration resulted in 5-fold less lysis. An IgM
monoclonal antibody directed against the breast cancer-associated antigen MUC1 (BC3,[30]) also
sensitized MCF7 cells to lysis by rat complement, but was less effective than the polyclonal

antiserum (data not shown).

Expression of endogenous membrane complement inhibitors on MCF7

The relative sensitivity of MCF7 to lysis by rodent, but not human complement, is indicative of
species selective complement inhibition by endogenous membrane-bound inhibitors. Flow
cytometric analysis confirmed the expression of the membrane-bound complement inhibitors
CD359, DAF and MCP on MCF7 cells (fig. 2). Previous data have shown that human CD59 does
not function effectively against rat complement [18], and the data shown here indicate that
endogenous expression of DAF and MCP on MCF7 does not effectively proteét the cells from

lysis by rat and mouse complement (figs. 1 and 2).




Complement-mediated lysis of MCF?7 cells expressing rodent CD59

The demonstration that heterologous (nonhuman) cells transfected with human CD59 display
increased resistance to lysis by human complement provided direct and unequivocal evidence that
human CD59 inhibits human complement-mediated cell lysis [31,32]. The phenomenon of species
selective activity allowed us to use a reciprocal approach to determine directly the functional

significance of CD59 expressed on human breast tumor cells.

MCF7 were transfected with rat or mouse CD59 cDNA, and cell populations stably expressing
high levels of recombinant rodent CD59 were isolated by cell sorting (fig. 3). Transfected cell
populations were then tested for their susceptibility to complement-mediated lysis to determine
whether expression of rodent CD59 correlated with increased resistance to rodent complement.
Untransfected MCF7 cells are relatively resistant to lysis by homologous human complement, but
are effectively lysed by both rat and mouse complement (figs. 1 and 4). The expression of either
rat or mouse CD59 on MCF7 cells however, protected them from lysis by rat and mouse
complement, respectively (fig. 4). MCF7 cells expressing rat CD59 were almost totally resistant to
lysis by 40% rat complement. The increased rat complement resistance of rat CD59 transfected
MCF7 cells was reversed by the addition of anti-rat CD59 blocking mAb 6D1 (not shown), thus
confirming that the heterologously expressed rodent CD59 is responsible for providing the
observed protection from rodent complement-mediated lysis. It is possible that an anti-CD59
antibody could increase cell lysis by fixing complement, but it has been demonstrated previously
that mAb 6D1 alone does not cause increased complement-mediated cell lysis by activating

complement [23].

Figure 4 further reveals a pattern of species selective activity for rat and mouse CD59. Rat CD59
effectively protected MCF7 cells from lysis by rat complement (fig. 4b), but not mouse

complement (fig. 4c). Mouse CD59, on the other hand, was effective against both mouse and rat




complement (figs 4b and c). The data further indicates that rat, but not mouse CDS59 is effective
against human complement, since only transfectants expressing rat CD59 show an increase in
resistance to human complement (fig. 4a). These data demonstrate the relative activities of each
CD59 protein against heterologous sera, and data is relevant to establishing rodent models for the

study of complement and complement inhibitors in tumor growth and control.

DISCUSSION

The phenomenon of homologous restriction, whereby cells are largely resistant to lysis by
homologous complement, is due principally to the species selective function of CD59 and other
membrane complement inhibitors [1]. However, species selective recognition of complement
ligands is not absolute, and CD59 from different species vary in their effectiveness at inhibiting
heterologous complement [12-14,17,18,29]. We show that human CD59, which is expressed on
virtually all primary tumors and tumor cell lines that have been examined, is not effective against
rat or mouse complement. We make use of this finding to demonstrate unequivocally that CD59
expressed on a human breast cancer cell provides efficient protection from complement-mediated
lysis. Previous in vitro studies have shown that antibodies directed against complement regulatory
proteins enhance susceptibility of tumor cells to complement-mediated lysis, and that isolated
CD359 protects heterologous erythrocytes from human serum [2,3,5,9]. However, these studies do
not exclude the possibility that other antibody- or CD59-interacting membrane molecules may
effect complement function at the cell surface [31]. It is also possible that CD59 may provide
functions other than direct protection from complement, and some data suggests a role for CD59 in

cell signaling [33-35].

Previous in vitro data indicate that CD59 also provides cells with protection from the effects of

sublytic MAC deposition [36]. Complement activation and sublytic MAC deposition on host cells




can trigger the release of various proinflammatory mediators, and can promote the expression of
membrane vascular adhesion molecules involved in leukocyte recruitment [37-39]. These
inflammatory processes may also play a role in host defense against tumor cells, and promoting
their induction may further potentiate the effectiveness of immunotherapeutic approaches based on

blocking CD59 function.

Our data indicate that endogenous CD59 expressed on human tumor cells implanted into rodents is
unlikely to provide effective protection against complement attack when tumors are targeted by
complement activating antibodies. The relative ineffectiveness of human CD59 against rat and
mouse complement presents a serious hindrance for studies aimed at determining the protective role
of CD59 (and other complement inhibitors) in rodent hosts bearing human cancers. The current
data establishes the feasibility of using human cancer cells expressing rodent CD59 to show, in
vivo, the regulatory effects of CD59 on complement-mediated tumor cell lysis. The aims of this
study did not require that cell surface expression of rodent and (endogenous) human CD59 be
quantitated relative to each other, although quantitative determinations of the activities of the
various CD59 proteins against heterologous sera may provide insight into structure/function

relationships of CD59 [18].

It is now clear that antibodies against cancer specific and overexpressed antigens are produced by
patients [40]. However, identified endogenous anti-tumor antibodies do not appear to result in
tumor destruction although deposition of complement may occur. Considered together with the
high level of CD59 expression in primary tumors, it is reasonable to postulate that autologous anti-
tumor antibodies elicited during tumor growth activate complement on some tumor surfaces, but
that tumor cell lysis is prevented by tumor expressed complement inhibitors. Consequently,
progressive tumor growth occurs. Inhibiting complement inhibitory proteins on a tumor cell

surface may enhance the outcome of an endogenous tumor-specific cytolytic humoral immune
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response, and may also greatly improve the outcome of anti-tumor immunotherapy using

complement-activating monoclonal antibodies directed against a tumor antigen.

The targeted neutralization of CD59 on tumor cells in vivo presents a challenge since CD39 is
widely expressed by normall tissue. Approaches for inhibiting complement inhibitors include the
use of humanized antibodies that block function, or high affinity inhibitory-peptide mimetics.
Possible methods for targeting and delivery include the use of encapsulated immunoliposomes or
tumor-specific antibodies in techniques utilizing bispecific recognition of CD59 and tumor antigen
[41,42]. Recently, the functional targeting of anti-CD359 antibodies to cancer cells by linking them

with anti-tumor antibodies has been demonstrated in vitro[43,44].

In conclusion, our data strengthen the hypothesis that the modulation of CD59 activity on a tumor
cell surface will provide an effective therapy when combined with complement-activating anti-
tumor antibodies. Neutralization of CD59 (or other complement regulatory proteins) may also
enhance a normally ineffective cytolytic humoral immune response. These hypotheses now need to
be tested in vivo. To this end, the current data define important parameters necessary for
establishing rodent models designed to evaluate the role of complement and CD59 in the growth

and control of human cancer.
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Figure legends
Fig. 1. Complement-mediated lysis of MCF7 cells. MCF7 cells were sensitized to complement
by preincubation in the indicated concentrations of anti-MCF7 membrane rabbit antiserum.

Sensitized cells were washed in media, exposed to 25% of either human, rat or mouse complement

(37 °C/60 min), and cell lysis determined. The omission of either sensitizing antibody or of serum
in cell lysis assays resulted in a background lysis of less than 10% of test value. Figure shows

representative data from 3 separate experiments.

Fig. 2. Endogenous expression of complement inhibitory proteins by MCF7. Cells were stained
by immunofluorescence using monoclonal antibodies to human CD59 (YTHS3.1), MCP (M75),
DAF (1A10), and CR1 (57F) as primary antibodies. Isotype matched antibodies of irrelevant
specificity were used for controls. Relative fluorescence resulting from all control antibodies was
be}ow 12. Staining with a representative control antibody is shown. Histograms of the relative

mean fluorescence intensities are shown.

Fig. 3. Expression of rodent CD59 by transfected MCF7. Stably transfected homogenous
populations of MCF7 cells expressing either rat or mouse CD59 were isolated by several rounds of
cell sorting. Figure shows flow cytometric analysis of sorted populations. Cells were stained by
immunofluorescence using anti-rat CD59 monoclonal antibody (6D1) or rabbit anti-mouse CD59
polyclonal antibody. Note that Immunofluorescence is not quantitative relative to the different

CD59 proteins. Histograms of the relative mean fluorescence intensities are shown.

Fig. 4. Complement-mediated lysis of MCF?7 cells expressing rodent CD59. Control and
transfected MCF7 cells were sensitized to complement by preincubation in 15% anti-MCF7
antiserum. Sensitized cells were exposed to different concentrations of either human (a), rat (b) or

mouse (c) serum, and lysis determined. The omission of either sensitizing antibody or of serum in

17




cell lysis assays resulted in a background lysis of less than 10% of test value. Figure shows

representative data from 3 different experiments.
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